Pharmacy Clean Room Design

TXCH Global HOPE

Objectives

By the end of this presentation, the participant should be able to:

- Understand the purpose of a pharmacy clean room (buffer room) and ante room
- Define primary vs. secondary engineering controls in a pharmacy
- Describe important components of a pharmacy clean room

Why do we need a clean (buffer) room?

Components of Clean Room Design

1. Primary Engineering Controls

• Containment Primary Engineering Controls (C-PEC)

2. Secondary Controls

- Containment Secondary Engineering Controls (C-SEC)
- Containment Segregated Compounding Area (C-SCA)

3. Supplemental Controls

- Closed system transfer devices (CSTDs)
- Aseptic Technique Best Practices

ISO 14644-1 Standards

ISO 5

- Less than 100,000 particles (of 0.1 µm each) per cubic meter (m³)
- Type of air which should be in the BSC
- Also known as "Class 100"

ISO 7

- Less than 10,000,000 particles (of 0.1 μm each) per cubic meter (m³)
- Also known as "Class 10,000"
- Type of air which should be in the ante room and buffer room

Primary Engineering Control

C-PEC basics

- Externally ventilated device designed to minimize worker and environmental exposure to hazardous drugs
- Basically... it's the biosafety cabinet (BSC)!
- Provides ISO Class 5 or better air

C-PECs for sterile hazardous drugs

- Compounding aseptic containment isolator (CACI, or "glovebox")
- Class II, Type A2 or B2 BSC
- For preparation of injectables, intrathecals, etc.

C-PEC for non-sterile hazardous drugs

- Containment ventilated enclosure (CVE) or dedicated BSC
- For crushing oral tablets, preparing oral suspensions, etc.

Secondary Control Components

Two "Types" of Pharmacy Spaces

ISO Class 7 buffer room + ISO Class 7 ante-room

- Externally vented C-SEC
- Negative pressure*
- Externally vented C-PEC (Class II or CACI)
- 30 ACPH

Unclassified C-SCA

- Externally vented C-SCA
- Negative pressure*
- Externally vented C-PEC (Class II or CACI)
 12 ACPH

*Negative pressure should be between 0.01 and 0.03 inches of water column relative to adjacent areas

Hospital^{*} CANCER AND HEMATOLOGY CENTERS

C-SCA Design Example

- For situations when a proper C-SEC design is not feasible
- Minimum of 12 ACPH

↑ entry from pharmacy workroom

CANCER AND HEMATOLOGY CENTERS

Ideal Buffer/Ante Room Design - A

↑ entry from pharmacy workroom

Ideal Buffer/Ante Room Design - B

↑ entry from pharmacy workroom

CANCER AND HEMATOLOGY CENTERS

BSC = biosafety cabinet, BSCII A2 or B2; CACI = containment aseptic compounding isolator; LAFW = laminar airflow workstation; CAI = compounding aseptic isolator

Temperature and Humidity

- Ante and buffer room should be maintained at controlled room temperature
 - 20 to 25 degrees Celsius
- Relative humidity should be at or below 50%, with a goal of closer to 40%

Other Considerations

- Location of personal protective equipment
- Sink location and method of activation (e.g., hands free)
- Location and type of waste disposal receptacles
- Secure access and remote monitoring
- Eye wash stations
- Refrigerators
- Shelving and storage
- Compounding pumps
- General office needs (phone, computer, chair, clock)

What's Next?

- Read USP<800> if you have not done so already
- Complete the practice questions

Global HOPE Pharmacy Education

